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The large r expansion of the pair-correlation function g ( r )  is calculated by first-order 
perturbation theory in the dense metallic electron liquid regime of jellium. The non- 
oscillatory terms in g ( r )  - 1 at large r are completely changed from the Hartree-Fock 
(HF) case, the leading term being cc r - * ,  not r-'' as in the H F  result. But the oscillatory 
terms arising from the sharp Fermi surface, though changed quantitatively from the HF 
predictions, remain largely intact. These terms, in fact, dominate the large r behaviour. 

KEY WORDS: Structure factor, plasmon, proper polarizability, 
pair correlation function. 

I INTRODUCTION 

Though qualitatively accurate treatments of the structure factor S(k)  
and the corresponding pair function g(r )  now exist, the behaviour of 
both quantities remains of interest for analytic theory in the jellium 
model of a metal. Specifically we tackle here the problem of the long- 
range behaviour of g(r)  in the dense electron liquid regime. 

In Section 11, we set out briefly the mathematics of asymptotic 
expansion of a Fourier transform. Section I11 concerns the application 
of this technique to the singularities in S(k)  at k = 0 and the way these 
determine long-range contributions to g(r), first-order many-body 
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216 A. HOLAS A N D  N. H. MARCH 

perturbation theory being used explicitly. Section IV then treats the 
Fermi surface non-analyticities in S(k) ,  which are assumed to occur 
solely at 2k,, the diameter of the Fermi sphere. Section V consists of a 
discussion and summary. Some details concerning the mathematics 
involved in the calculation of present results are given in the nine 
Appendices. 

As to the microscopic theory of g(r) ,  which we shall invoke below, the 
pair-correlation function g(r )  of the uniform electron liquid may be 
expressed1g2 in terms of the proper polarizability n(k, w )  via the 
dynamic structure factor S(k ,  o) and its integral over all energy 
transfer-the static structure factor, namely S ( k ) :  

g(r )  - 1 = - d3k [ S ( k )  - l]exp(ik. r) 8rc ' J  
dk sin(kr){k[S(k) - 111, =&J, 
m 

S(k)  = [ d o  S(k ,  o), 
J - ' X  

- h  
rcn S(k,  o) = ~ Im X(k, o)O(w) 

while the dynamical susceptibility (response function) x is related to ll 
by 

uk being the bare Coulomb interaction 

It is in fact convenient to work with the dimensionless proper 

(1.6) 

polarizabilit y 

Q(k,  0)) = E ( k ,  0) - 1 = - o k n ( k ,  0) 

in terms of which the density-density response function (1.4) is given by 
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PAIR FUNCTION OF ELECTRON LIQUID 217 

and then one finds 

Throughout this paper, k; = uagr,  is used as the unit of length, wave 
vectors k and q being measured in units of k,, while 2E,h-’  = hrn-lk; 
is the unit of frequency w, CI = ($7~)”~ z 0.521. 

I I  ASYMPTOTIC EXPANSION OF A FOURIER TRANSFORM 

Since g(r )  is the Fourier transform (FT) of a function involving S ( k )  as 
in Eq. (1.1) we will require the technique given by Lighthillj. The large y 
properties of fFT( y) defined as 

are thereby determined solely by the number and nature of singularities 
of the function f ( x ) .  If xlr  x 2 , .  . . , x M  denote these points of non- 
analyticity, such that in the vicinity of each of them 

(2 .2)  f ( x )  = Fm(x - xm)  + small remainder 

where F m ( { )  involves sgn(<), 6(t), In 151 etc. then 
M 

fFT(Y) = exp(ixmy)F~, Fdy) 
m =  1 

+ contribution from remainder. (2 .3)  
A table of FT of a variety of non-analytic functions F m ( { )  is given in Ref. 
3 and in Appendix 9. As an example, following from (A9.7) and (A9.11) 
we have 

n +  1 

xn sgn(x) ; n !2( ;) . (2 .4)  

111 NON-OSCILLATORY ASYMPTOTIC 
CONTRIBUTIONS TO g(r) 

The function g(r )  may be expressed in the standard form (2.1) if we 
rewrite (1.1) as 

m 3 
2r - m  

g(r)  - 1 = - Im 1 dk exp(ikr){Q(k)[S(k) - 13k). (3.1) 
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218 A. HOLAS A N D  N. H. MARCH 

The presence of O(k) in Eq. (3.1) means that k = 0 is one of the points of 
non-analyticity. Applying Lighthill's formalism, we arrive at the follow- 
ing contribution to g(r ) :  

where 

(3.3) 

From Eqs (3.2) and (3.3) it follows that only odd terms in the power 
series expansion of S(k) for small k contribute to asymptotics of g(r), 
namely S(k) a k Z m + l  leads to [ g ( r )  - 11 cc l/r2m+4. Besides this, contri- 
butions due to non-analyticity at some k ,  # 0 are expected. While 
[ g ( r )  - l]non-osc has a form of power series in I - ' ,  Eq. (3.2), the second 
contribution to [g ( r )  - 11, depends on I in a more complicated way, 
involving, among others, oscillatory factors cos(k,r) and sin(k,r) as in 
Eq. (2.3). 

A 

We immediately illustrate the general result (2.3) and (3.2) by using the 
Hartree-Fock structure factor SHF(k), which has the well known form 

Example of Hartree-Fock structure factor 

{;k/4 - k3/16 for k d 2 
for k > 2' S d k )  = 

In the vicinity of k, = 2 it may be rewritten as 

(3.4) 

~2 + t) = 1 - ~<&>t' + (&)t3i + sgn(t)[(A>t2 + (&)t31. (3.5) 
We see that there are two points of non-analyticity: k = 0 and k = 2. 
The asymptotic form of g(r) ,  corresponding to them, is 

gHF(I) - = bHF(I) - Ilnon-osc + kHF(') - l l o s c  

= -(Z)(I/r4 + l/r6) 

- ($)[cos(2r)/r4 - 2 sin(2r)/r5 - cos(2r)/r6]. (3.6) 

Because expansions (3.4) and (3.5) have a finite number of terms, the 
expression (3.6) is exact (not only asymptotic). 
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PAIR FUNCTION OF ELECTRON LIQUID 219 

6 Non-oscillatory terms in many-body perturbation theory 

In turning from the Hartree-Fock result, exact at  r ,  = 0 (i.e. for the 
non-interacting electron gas) to non-zero rs ,  one must recognize that 
two additional physical parameters enter the theory, namely the plasma 
frequency o, and the Thomas-Fermi wave vector kTF. These quantities 
are small for a dense electron liquid (i.e. small rs) according to 

and 

in the units defined above. 
Therefore, in seeking the small k expansion of S(k) ,  one must consider 

the range of k 4 kTF. In this region the dynamical structure factor 
S(k, w) has the following form: (i) there is a small “bump” in the 
frequency range 

and (ii) for higher frequencies a weak tail, with a narrow plasmon peak 
imposed on it at frequencies close to 0,. 

This general picture simplifies in the approximation of first-order 
perturbation theory2, namely there is no tail for o > o + ( k )  and the 
plasmon, being now undamped, becomes a delta-function peak. This is 
because Im{Qo(k, o) + Q’(k, w)] = 0 for o > w+(k).  Therefore in first- 
order perturbation theory the dynamical structure factor may be split 
unambiguously into the sum of two parts: 

(3.9) 
where the first part is the incoherent contribution from the electron- 
hole continuum while the second arises from the plasmon peak. 

S ( k  0) = S i n c ( k  0) + S p l ( k  0) 

C Plasmon contribution 

The first-order perturbation theory of the plasmon dispersion is known 
to yield’ 
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220 A. HOLAS AND N. H. MARCH 

Therefore it follows from Eq. (1.8) that 

S,,(k> w) 

(3.1 1) 

an expansion of the dielectric function ~ ( k ,  w), Eq. (1.6), in being made 
about the plasmon frequency. 

The derivative of E appearing in Eq. (3.1 1) can be readily calculated in 
the region of small k from the known expansions for Q o ( k , w )  and 
Q'(k,  o) given in Ref. 2. The result is 

Therefore one has finally the result 

(3.13) 

which deals with the plasmon contribution to S(k ,  a). To obtain the 
desired contribution to the static structure factor S(k),  Eq. (1.2) is used 
to yield 

= i w P ( & y [ l  - i ( l  -z)(&y+o((&y)]. (3.14) 

D Incoherent contribution 

To deal with the incoherent part Si,,(k, w), it is first to be noted that 

Q(k,  w )  = E(k, w )  - 1 = ("y kTF n ( k ,  0) (3.15) 
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PAIR FUNCTION OF ELECTRON LIQUID 

where the proper polarizability IR(k ,  w)l - 1 in the frequency range 
0 d o d o + ( k ) .  Therefore in this range, and for k 4 k,,, one has 

22 1 

3 k  -1 

* ( k T J 2  [ 1 + ( F y f i ( k ,  w )  1 Sin,(k, w)  = - - Im 

= 3 71 (">'Im{&][ k,, 
1 + O((&Y)]. (3.16) 

In first-order perturbation theory, 

+ O(r5). (3.17) 
1 R' - 1 1 

n ( k ,  w)  2: no + R' - li" - (R")2 
Separating Sin, into zeroth- and first-order parts then leads to: 

Si,,(k, 0 )  = S;nc + St,,, + . . . (3.18) 

where 

while 

Here Po and P' are defined by: 

Po(x) = ps ('>'Qo(k, kTF k x )  

= lim R o ( k ,  k x )  
k-0 

(3.21) 

and 

(3.22) 
4* 
ar, k - 0  

P'(x)  = - lim f i ' ( k ,  kx ) .  

It is to be noted that both SFn,(k, k x )  and Sfn,(k, k x )  are zero for 
x > 1( = l imk-+o(w+(k)/k)) .  
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222 A. HOLAS A N D  N. H. MARCH 

To obtain the desired contribution to the static structure factor S(k) ,  
Eq. (1.2) is used to yield 

where 

and 

(3.24) 

(3.25) 

The details of these evaluations are given in the Appendices 2 and 3. 

order of k 5 .  
Equation (3.23) demonstrates that the leading term of Sin,(k) is of the 

E 

This is the point at which to compare the present results with the 
predictions made by Pines and Nozieres', namely 

Comparison with the predictions of Nozieres and Pines 

(3.26) 

where the three terms exhibited are the leading ones from (i) plasmon 
excitation, (ii) multipair excitations and (iii) single-pair excitations. 

The result (3.14) derived above contains the first term in Eq. (3.26) 
exactly (using Eq. (3.8)), and corrections involving higher even powers 
of k.  Our leading term from the incoherent contribution (Eq. (3.23)), - k 5 ,  corresponds to the single-pair term in Eq. (3.26). However, it is 
entirely possible that higher order terms contribute to the term propor- 
tional to k5  in Eq. (3.26). It is clear from our analysis that cmP is zero to 
the order in rs to which we have worked. This in no way denies the 
possibility that cmP # 0 in higher orders of perturbation theory (i.e. it 
must arise from Q 2  + Q 3  + ...). 
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PAIR FUNCTION OF ELECTRON LIQUID 223 

F The form of non-oscillatory part of g(r) 

The above result for the small k expansion of the static structure factor 
S ( k )  may be used, in conjunction with Eqs (3.2) and (3.3) to yield long- 
range non-oscillatory contributions to the pair function g ( r )  as 

[g(r )  - l]non-osc = - 245.79r: [ 1 + 0.18609~~ + . . .] 

+ (3.27) 

where rTF = k;; = (7c/4ars)'". 

IV OSCILLATORY TERMS IN LONG-RANGE 
BEHAVIOUR OF g(r) 

We know, from the structure factor for non-interacting electrons S,,(k), 
Eqs (3.4), (3.5), that there is non-analyticity at k = 2, i.e. at the wave 
vector equal to the diameter of the Fermi sphere. The fact that the sharp 
Fermi sphere remains after switching on the electron-electron interac- 
tion means that one must expect that k = 2 is the point of non- 
analyticity at finite r ,  also. As will be shown, within the 1st-order 
perturbation theory there are no more points of non analyticity k # 0 
and we expect this to be true in general. 

For k > kT,  (i.e. in the range where plasmon excitations do not 
occur) and for small rs (r, 5 2) we have IQ(k, w)l < 1, e.g. at k = 2, 
IQ(k, 0)l z lQo(k, 0)l = 0.08 r,. Therefore the following expansion of 
the dynamical structure factor (1.8) is possible: 

S(k,  o) = O(w) 2 (k)' I m [ Q  - 
kTF 

.]. (4.1) 

Taking into account that the subsequent terms of the perturbation 
series Q = Q o  + Q' + . . . are of the order of - rf , r:, r," In r,, respective- 
ly, we arrive at the following series for S(k,  w):  

S(k,  W )  = So(k,  W )  + S'(k,  W )  + ... ( 4 4  

where the zeroth-order term is obviously the Hartree-Fock dynamical 
structure factor: 

So@, w )  = SHF(k ,  o) = O(w) Im Qo(k,  0). (4.3) 
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The first-order term comes from two sources: 

A. HOLAS AND N. H. MARCH 

Im{Q'(k, o) - [Qo(k, o)I2}; (4.4) 

one due to the first-order part Q' of the proper polarizability, which 
may be usefully divided further into the exchange and self-energy 
parts2: 

(4.5) 
and the other, due to screening effects (improper polarizability consist- 
ing of two zeroth-order proper polarizabilities, so this contribution 
occurs in RPA): 

Q1(k, O )  = QE"(k, O) + QSE(k, O )  

QSc(k, W )  = - [Q"(k, o)I2. (4.6) 
By integration over frequencies according to Eq. (1.2), we obtain the 
contributions to the static structure factor, corresponding to them. 

It is interesting that the self-energy diagram does not contribute to 
asymptotics of g(r )  because 

SSE(k) = 0 (4.7) 
for any k > 0; see Appendix 5. 

The remaining terms: So(k), SEx(k) and Ssc(k) exhibit non-analyticity 
at k = 2, which produces the following asymptotics of the pair- 
correlation function: 

9 sin 2r 1 In2  3 

+ 9!?$? {o + 2 ['+ ...]} + o  ((l::') ~ (4.8) 2 r  

where dots represent (not calculated yet) "Ex" contributions to the term 
a F 5 .  Here y N 0.5772 is the Euler constant. The details leading to this 
result are recorded in Appendices 4 and 6. 

V DISCUSSION AND SUMMARY 

Equation (4.8) giving the oscillatory terms in the long-range behaviour 
of g(r),  and the non-oscillatory terms in Eq. (3.27) constitute the main 
results of this work. We emphasize again that these formulae are valid 
precisely to first order in perturbation theory. 
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PAIR FUNCTION O F  ELECTRON LIQUID 225 

It follows then that the asymptotic expansion of the pair-correlation 
function is the sum: 

g(r )  - 1 = C d r )  - 1lnon-osc + C d r )  - 11osc (5.1) 

in the metallic regime of jellium, i.e. rs < -80. Naturally the explicit 
results for the two contributions in Eq. (5.1) presented in this paper are 
only quantitatively valid’ r, 5 2. 

However, in spite of this quantitative limitation on our expansions, 
we can draw some more general conclusions as to the switching on of 
electron-electron interactions in jellium: 

a) among non-oscillatory terms, those of the form F4 and r - 6  
predicted by the Hartree-Fock case are annulled by the Coulomb 
interactions, while a new term of the form r:(rTF/r)E arises from 
single-particle excitations. 

b) among oscillatory terms, all those from the Hartree-Fock case 
remain. However, the leading Hartree-Fock term cos(2k,r)/r4 is 
multiplied by a factor which is 1 plus a first-order correction which 
has a weak r dependence of the form ( y  + In 2r)’.* 

The major conclusion therefore is that while the non-oscillatory 
terms in g(r)  at large r are crucially changed by switching on the 
electron-electron interactions, the oscillatory terms arising from the 
sharp Fermi surface are altered in a quantitative rather than a 
qualitative way. 

Note added in proof 

Using the relation x 2 1 - exp( -x), one can write for this small correction 

where p = (arJ2n)”’ N (rJ12)”’ and ro = (2 exp y ) -  5 0.3. This term may herald a 
change in the long-range behaviour, namely by a fractional ( p )  inverse power of r. 
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226 A. HOLAS AND N. H. MARCH 

Appendix 1 Integral Representation of Q1(k, co) 

The first-order contribution Q’(k,  o) to the proper polarizability 
Q(k,  a) was obtained in Ref. 2 directly from the appropriate diagrams 
as 

Q’(k,  W )  = QEx(k, W )  + QSE(k, W )  = ( z r F 1 ( k ,  w )  (Al . l )  

with 

F’(k,  O )  = FEx(k,  o) + FSE(k, O) 

(A 1.2) 

1 i[ (0 + iO+ + WPl - OPlfk)(O + io+ + op2 - wp2+k) Ex 

1 

where 

n,“ = d(l  - 42) 

oq = $q2. 
(A1.4) 

The imaginary part of the six-dimensional integral (A1.2) was subse- 
quently evaluated in the form of a combination of elementary functions 
(“SE diagram) and a one-dimensional integral of a combination of 
elementary functions (“Ex” diagram). The real part was obtained 
numerically by evaluation of the Hilbert transform of the imaginary 
part. Unfortunately, this representation of Q’(k, o) is not suitable for 
the analytical investigation of its properties as k + 0 or as k + 2, which 
are of interest in the present paper. Therefore we shall transform Eq. 
(A1.2) in such a manner, that its dependence of k will be easy to 
manipulate. 

In the first step we introduce new variables of integration, qi, shifting 
the origin of the coordinate system: 

(A1.5) p. 1 = q. I - 3 ‘k7 
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PAIR FUNCTION OF ELECTRON LIQUID 227 

which simplifies the denominators 

Wpi - W p i + k  = [(pi - i)' - (4; 4- f)'] = -k.qi. (A1.6) 

Then Eq. (A1.2) may be rewritten as 

Now cylindrical coordinates are introduced, with z-axis parallel to 
k = (0, 0, k ) :  

qi = ( P i  cos cbi, Pi sin cbi, zi) (A1.8) 

so 

(qi _+ 3k)' = p' + (zi _+ $k)2 (A1.9) 

and 

The dependence of the integrand in (A1.7) on variables cpi enters via 
l/(ql - q2)2, i.e. the Coulomb potential only. It may be integrated out 
immediately to give 

- 2PlP2 cos(cb1 - 42)l - I  

= c(zl - z2l4 + 2(zl - z,)~(P: + 
+ ( P :  - P 2 )  2 2 1 -1 /2  ( A l . l l )  

We see that new variables 

si = p ;  (A 1.12) 

may be introduced. It is convenient also to represent the frequency as 

w = kx (A 1.13) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



228 A. HOLAS AND N. H. MARCH 

Finally, we arrive at the following integral representation of the 
first-order diagram 

x p((zl - z,)', s,, s2)yEXssE(x + iO+, zl,  z2) 
(A 1.1 4) 

where 

N(zi, s,, k )  = O(l - (s i  + (z, - $ k ) 2 ) )  - O(l - (s i  + (z, + 
and was defined by Eq. (Al.11). Note that N(zi, s i ,  k )  

N(-z~,  s,, k )  = - N ( z ~ ,  s i ,  k )  

and odd in k 

N ( z ~ ,  s i ,  - k )  = - N(zi, si ,  k) .  

(A 1.1 5) 

(A 1.1 6) 

)k)')) (A1.17) 

is odd in zi 

(A 1.18) 

(A 1.1 9) 

We see that the dependence on k enters the integrand of Eq. (A1.14) via 
two factors [ N ( z i ,  s,, k ) / k ] ,  i = 1,2, only, while the dependence on the 
frequency (x) occurs via the factor y(x + iO+, zl ,  z2) .  

Appendix 2 Evaluation of /: 

This quantity is defined according to Eq. (3.24) as 

(A2.1) I :  = - Im lo dx[ - P o ( x ) ] -  

where P o ( x )  is related to Qo(k,  o)-the 0th-order proper polarizability 
(Lindhard's function), Eq. (3.21), by 

2 l  
71 

2 

Po(x)  = lim (L) Qo(k, k x )  
k - 0  kTF 

(A2.2) 
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PAIR FUNCTION OF ELECTRON LIQUID 229 

Because the Lindhard function is well known', Eq. (A4.4), this limit 
may be found analytically, leading to the result 

A 
Im PO(X) = ~ xe(i - x2), 

2 
(A2.3) 

Re Po(x) = 1 - f x  In ~ I: ::I (A2.4) 

Writing I :  in terms of the above explicit functions one finds 

I :  = Io' dx[Im Po(x)]([Re P0(x)lz + [Im P0(x)l2)-' ( A 2 3  

which is a form suitable for numerical evaluation. The term diverging 
logarithmically for x -+ I ,  Re Po(x), happens to be in the denominator, 
so the integrand is finite. Nevertheless, because of it, the region close to 
x = 1 needs special attention (increased density of integration points) in 
order to ensure desired accuracy of the numerical quadrature. The 
result thus obtained is 

1: = 0.3447085. (A2.6) 

Appendix 3 Evaluation of /A 
This quantity is defined according to (3.25) as 

(A3.1) 1; = 71 Im jo d ~ P ' ( x ) [ P ~ ( x ) ] - ~  

where P'(x) is related to Q'(k, w)-the first-order proper polarizability 
diagram, Eqs (3.22), (3.15) 

2 '  

A2 
P'(x) = 22 lim k2Q'(k,  kx) 

"s k - 0  

or, using Eq. (Al.l), to the function F'(k, w) 

(A3.2) 

(A3.3) 
1 

P'(x) = lim F'(k, kx). 
7i k + 3  

P.C.L. D 
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230 A. HOLAS AND N. H. MARCH 

The form (A1.14) of F'(k, kx) is very suitable to perform the required 
limit. Let us expand N(zi, s i ,  k )  Eq. (A1.17), in a power series in k :  

N(z,, si, k )  = N(zi, si, 0) + - k + O(k2)  

= 0 + 2Zi6(1 - si - Z2)k + O(k2). (A3.4) 
After inserting this expansion into (A1.14), one gets immediately the 
limit (A3.3) as 

Tr 1 
P'(x) = , [= dz, [ ds12z16(1 - s1 - zf) 

' J - m  JO 

x jm dz, ds22z26(1 - s2 - z2)Py' 
- m  

m m 

= 2 1  dzlz,O(l - z:) dz2z2B(1 - z:) 
- m  I- m 

x P((zl - z , )~ ,  1 - z:, 1 - z:)y'(x + i O f ,  z,, z2) .  (A3.5) 

The function B, Eq. (Al.ll), with arguments given in Eq. (A3.5), 
simplifies to 

Therefore 
P = M Z l  - z211-1 

P'(x) = 1' d z l j l  dz2zlz2y1(x + iO+, z,, z2)/lzl - z21. (A3.6) 

The function y1 = yEx + ySE, Eqs (A1.15), (A1.16), introduces singulari- 
ties to the integrand, laying along the lines z1 = x and z2 = x. Coinci- 
dence of the singularities at the point of intersection of these lines 
produces a new type of distribution which is difficult to handle. 
Therefore, in order to avoid this problem we transform the function y 
using a well known Feynman identity 

-1 - 1  

dcr 1 1 
(2 - Xl)(Z - x2) = s, [z - x, - cr(x2 - x1)]2 

du 
(A3.7) 

= jol - x2 - a(xl - x2)]2 

to rewrite its "Ex" part, and then an obvious identity 

1 -a 1 
(z - x0l2 - a Z  (Z - x0) 

(A3.8) 
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PAIR FUNCTION OF ELECTRON LIQUID 23 1 

to further transform both “Ex” and “SE” parts: 

1 
z - z1 - a(2, - Zl) z - z1 

-’ 
Jol dcc { [ 1 Y (z, z1, z2) = ~ ~ aZ 2 

(A3.9) 

Although P ’ ( x )  was defined originally for real x, Eq. (A3.6) shows that 
it is an analytical function of complex z in the upper half plan Im z > 0, 
because poles, occurring in yl, are located on the real axis (zl, z ,  are 
real). 

Inserting (A3.9) into (A3.6) we arrive at 

d 
dz 

P’(z) = ~~ R ( z )  (A3.10) 

where the function 

(A3.11) 

is also an analytical function of z in the Im z > 0 half plane. From 
(A3.11) we can immediately calculate Im R ( x )  for real argument x as 

1 Im R(x) = -? jol do! 1; dz, J dz, Z l Z 2  

2 - I  I21 - 2 2 1  

x [6(x - z1 - a(z2 - zl)) - 6(x - z l )  

+ 6(x - Z Z  - M ( Z ~  - 2 2 ) )  - 6(x - zZ)]. (A3.12) 
To make further progress, notice that the integrand is symmetrical with 
respect to the interchange of z1 and x,. In such a case, for general 
f(z2, z1) = f(Z1, z2) we have 

1 1; dz, 1’ dz2f(z1, z2) = 2 s_, dz, s,: dz2fk1, 22) 
- 1  

( 1  - 1 2 )  

- ( 1  - 1 2 )  

= 4 lo1 dr, dr,f(r ,  - r2,  r l  + r,). 
Applying this to (A3.1 l), after some algebra, we get ( r  = r , )  
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232 A. HOLAS AND N. H. MARCH 

where 

Ro(x, CI, r )  = O( 1 - x - 2( 1 - a)r)O( 1 + x - 2ar) 

x {[?(I - 2u) + x]* - r2j 

- O(1 - x - 2r)O(1 + x){[r + x]’ - Y’}. (A3.14) 

The function R ,  represents a quadratic polynomial of r,  extending over 
a restricted range of r, dictated by &functions. Because, a priori, we do 
not know if the integral is convergent, let us put for a moment a positive 
E instead of 0 as a lower limit of integration over r. After performing 
these integrations we find that the coefficient at In E is exactly zero, so 
the integral is convergent. It must be stressed, however, that the last fact 
holds only in the case when the sum of the “Ex” and “SE” contributions 
appears as the integrand (the first and the second terms of Eq. (A3.14), 
respectively). If one attempts to calculate each one of these contribu- 
tions separately, this would lead to divergent results. After some 
straightforward algebra the final result is obtained from (A3.13) as 

Im ~ ( x )  = zd(1 - x2) [ 1 + 3x2 + In (’ ~ 4”)]. (A3.15) 

Coming back to the evaluation of (A3.1), we see that Po(x) is needed 
(but this function is known, Eqs (A2.3), (A2.4)), and P’(x)-both its 
real and imaginary part. From the form (A3.10) it is clear that we need 
Re R(x) besides Im R(x), found in Eq. (A3.15). The function Re R(x) 
may be calculated, in principle, from Im R(x), using Kramers-Kronig 
relations. But in the case of Im R(x) having a logarithmic singularity at 
x -+ f 1, this approach is difficult because we do not know a ready 
prescription as to the way to handle a product of this singular function 
and the principal value P( l/(x - xo)) distribution, when one point of 
singularity approaches the second one. Similar difficulties will arise 
during subsequent integration (A3.1). 

Therefore we choose another way of calculating the integral (A3. l), 
namely by application of the methods of analytical functions, in the 
spirit of an example discussed in Appendix 7. Because for x > 1, 
Im P(x) = 0, see Eq. (A3.15), and Im Po(x) = 0, Eq. (A2.3), therefore we 
may formally extend the upper limit of integration in (A3.1) and write 

I:  = Ic 2 Im JOm dxP’(x)[Po(x)l-2 (A3.16) 

and then integrate along a contour in the complex plane, starting from 
0 and ending at 00, but omitting the point of singularity x = 1. 
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PAIR FUNCTION OF ELECTRON LIQUID 233 

We insert (A3.10) into (A3.16) and then integrate by parts 

2 d 
1; = - Im lom dz[P0(z)]-’ ~ R ( z )  

n dz 

2 
= - Im([Po(m)]-2R(a) - [ P o ( 0 ) ] - 2 R ( O ) }  

n 

d 
71 dz 

- 2 Im JOm dzR(z) - [P(z)]-’. (A3.17) 

Because for 1x1 > 1 both Po(x)  and R ( x )  are purely real, there is no 
contribution of the first term of the above result. From (A2.3) and 
(A2.4) we find Re Po(0) = 1, Im Po(0) = 0, while from (A3.15) 
Im R(0) = ~ ( 1  - In 4) and, as it will be shown in Eq. (A3.22), 
Re R(0) = 0. Therefore Ey. (A3.17) may be rewritten as 

2 d 
n 71 JOw dz 

1; = - - ~ ( 1  - In 4) - - Im dzR(z) - [Po(z)]-’. (A3.18) 

Now we are going to apply the results of Appendix 7. For that reason 
we must find the spectral representations for the functions occuring in 
the integral in (A3.18). 

Concerning R(z), we must check its behaviour at large 1x1. We 
expand the integrand of (A3.11) in powers of l/z, and, after some 
algebra we find 

R(z) = - __ + 0 , 
45z3 (I.) (A3.19) 

Therefore the spectral representation (A7.2) for the function R exists 

(A 3.20) 

and, for real argument, 

R ( x )  = R,,(x + i0’). (A3.21) 

Note that because Im R(x), Eq. (A3.15), is an even function, then, 
according to (A3.21), (A3.20) 

Re R( - x )  = - Re R(x) .  (A3.22) 

Now let us investigate d[PO(z)]-’/dz. From (A2.3) and (A2.4) it is easy 
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234 A. HOLAS AND N. H. MARCH 

to obtain an analytical continuation of Po(x) from real x into the 
complex plane: 

Po(z) = 1 + -In ~ ; (I; i) (A3.23) 

We see that this function is analytical on the whole complex plane 
except the poles at z = k 1. A cut, connecting these points, makes this 
function single-valued. By tracing countours of lPo(z)l = const on the 
complex plane we analyzed the behaviour of this function and found 
that [Po(z)] has no poles, and it must be analytical function, as being 
a reciprocal of the analytical function. Therefore the function 
d[PO(~)]-~/dz must be also analytical. Now we investigate it at large 
121. Expanding Po(z), Eq. (A3.23) 

) (A3.24) 
3 3  

and then performing differentiation and other manipulations on the 
series we get finally 

Therefore the spectral representation is possible after subtracting the 
terms which are large for large IzI: 

d 108 
-- [P0(z>]-' = 36z3 - -- z + ~,,(z), dz 5 

OC, dc Im S ( c )  
Ss,(z) = - --, s - m 7 c  ( - 2  

(A3.26) 

(A3.27) 

d 
dx 

Im S(x) = Im - [Po(x)] -'. (A3.28) 

The last quantity is obtained by direct differentiation of the known 
expressions (A2.3) and (A2.4). 

In the final step we insert (A3.21) and (A3.26) into (A3.18) to get 

1; = 2(ln 4 - 1) - 
n 

x [36x3 - YX + SSR(x + iO')] 

1 + 3x2 + In 

x [36x3 - '-:!XI - I [ R ,  S ]  = 1.1819290 - I [ R ,  S ]  (A3.29) 
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PAIR FUNCTION OF ELECTRON LIQUID 235 

where I [ R ,  S] is to be calculated according to (A7.8). Because Im S(x) 
and Im R(x) are both even functions, therefore the result is not zero, 

= -0.3651376 (A3.30) 

by numerical integration. Therefore, finally 

1; = 1.5470666. (A3.31) 

Some remarks concerning numerical integration (A3.30) may be useful. 
For small x1 and x2,  the functions ImR(x,) and ImS(x2) tend to 
constant values. If polar coordinates are used in this region, the 
integrand becomes finite. In the regions x1 -, 1 or x2 + 1 the integrand 
diverges, Im R(l - <) cc In((), Im S(l - 5) cc { l/[((ln <),I}, but is inte- 
grable. Numerical quadratures must take into account this singular 
behaviour. Their quality and accuracy may be easily checked because 
similar integrals 

2 l  
S,, = .n Jo dx Im S(x)x' (A3.32) 

are exactly known, e.g. S M o  = 0, S M 2  = 1921875, S,, = 5184/67375. 
This property is immediately established if the large-lzl expansion of 
(A3.27) is inserted into (A3.26) and compared with the expansion 
(A3.25). A similar check exists for integration of Im R(x). 

Appendix 4 Evaluation of SSc(k) and its 
contribution to [g ( r )  - I],,, 

According to (1.4), (4.4) and (4.6), the screening-effect part of the static 
structure factor is given by 

a, 

Ssc(k) = dwSs'(k, W )  (A4.1) i- m 

(A4.2) 
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236 A. HOLAS AND N. H. MARCH 

i.e. it is expressed in terms of the well known’ Lindhard’s function 
Qo(k ,  0). We recall its form (note w = k x )  

Qo(k,  k x )  = 3$ -2 {; [(t - X ) f L ( 2  - x )  + (5 + X ) f L ( 4  + x ) ]  

+i[0(1 - ( ; - - x ) ’ ) ( ,  - ( i - x ) ’ )  

- B( 1 - (5 + xy)( 1 - (1 + x ) 2 ) ] }  

where f L ( x )  is the normalized static Lindhard‘s function 

1 1 - x 2  
f L ( X )  = + ___ 4x 

So, according to (A4.3) and (A4.2) 

Im QSc(k, w )  = - 2  Re Qo(k,  w )  Im Qo(k ,  o) 

(A4.4) 

(A4.5) 

(A4.6) 

SSc(k ,  k x )  = O(x)Csc(k) 

- 0( 1 - (5 + x)’)QSc( 5 + X, k ) ]  (A4.7) 

where 

QSc(v, k )  = (1  - v’)[v~=(v) + ( k  - V)fL(k - v)]. (A4.9) 

Now we integrate over frequencies, Eq. (A4.1), and obtain 

Ssc(k)  = kCsc(k)[S,(k)  - 20(2 - k)S,(k)] (A4.10) 

where 

1 

S,(k)  = dvmSc(v, k )  
- 1  

(A4.11) 

dxOSC(1 - x, k) .  (A4.12) 
S A k )  = rk”* 

The form (A4.10) is dictated by the presence of 0-functions in (A4.7). 
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PAIR FUNCTION OF ELECTRON LIQUID 231 

The function Ssc(kj is non-analytical at k = 2. In order to apply the 
Lighthill procedure (see Section 11) we must expand it in powers of a 
small departure from the point of non-analyticity 4 = k - 2. 

Inserting (A4.9) into (A4.11) we get 

1 
SA(2 + 5) = ( dv(1 - v2)vfL(v) 

- 1  

1 

+ 1 dv(1 - v2)(2 + 5 - v)fL(2 + 5 - v). (A4.13) 
- 1  

Because f L ( x ) ,  Eq. (A4.5), is even, the first integral vanishes. To analyze 
the second one, let us rewrite xfL(x) as xfL(x) = x/2 - +(x - 1) 
(x + 1) In Ix + 1 I + i ( x  + l)(x - 1) In ( x  - 1 I. Proceeding to isolate 
the non-analytic (na) part, we see that the region of x z 1 will be 
involved. We find after some calculation the result 

~,,,(2 + 5 )  = ict3 + 0(c4)1 in 151. (A4.14) 

Similarly, calculating the contribution B we find 

S,(2 + l )  = i t 2  + [& - &In 2 + &In  151]t3 + 0(t4 In 151) (A4.15) 

Here analytical terms must be also included, because the factor 19( - 5 )  
in (A4.10) provides the non-analyticity. So, combining both contribu- 
tions in (4.10) and taking into acount the k-dependent prefactor, we get 
finally for the non-analytical part of [ S ( k )  - I l k  the contribution 

CSSC(2 + O(2 + Ol", = :a;{ -it2 sgn(0 + 4"(& + In 2) sgn(4) 

- zi In I51 - Q In I41 sgn(O1 + 0(t4 In I 41)). 1 

(A4.16) 

Making use of the Fourier transform of 4" sgn(t), Eq. (2.4), and of 
t" In( 5 1, 5" In( 5 1 sgn(5), see Lighthill's3 table or Eq. (A9.4)-(A9.1 l), and 
applying (2.1) with (2.3) to (3.1), we get 

cos(2r) n cos(2r) 
- 7 

- - __ - 

4 r5 

sin(2r) + In 2)] __ r5 + [$(y + In 2r) - 

(A4.17) 

where y N 0.5772 is Euler's constant. 
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238 A. HOLAS A N D  N .  H. MARCH 

Appendix 5 Evaluation of SSE(k) 

According to (1.2), (4.4), (4.5) and (Al.l), the self-energy part of the 
static structure factor is given by 

SSE(k) = 1 dwSSE(k, w )  
m 

(A5.1) 
-33 

SSE(k, 0) = O(o) (")' Im QSE(k, w )  

QSE(k, w )  = (2) FSE(k, w )  

7I k,, 
2 

(A5.2) 

(A5.3) 

where FSE(k, w )  is defined by (Al.14). The dependence on the frequency 
w = kx enters FSE(k, w )  only via the function ySE, Eq. (1.16), being a 
factor of its integrand: 

SE y (z, zl, z 2 )  = - 

z = x + iO+. Therefore the integration over frequencies, Eq. (A5.1), 
including O(w) from Eq. (A5.2), will affect only Im ysE: 

Joa k dx Im ySE(x + iO+ ,  zl, z2) 

x =  do 1 
= ~ Im 

So, using (A1.14), 
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PAIR FUNCTION OF ELECTRON LIQUID 

But, according to (A 1.17) 

N(0, si, k) = 0 
so, finally 

for any k > 0. 
SSE(k) = 0 

239 

(A5.7) 

(A5.8) 

Appendix 6 Evaluation of S E x ( k )  and its 
contribution to [g ( r )  - 

According to Eqs (1.2), (4.4), (4.5) and (A 1. I ) the exchange part of the 
static structure factor for k > 0 is given by 

SEx(k) = i dwS""(k, o) 
m 

(A6.1) 
- m  

QE"(k, w )  = 

(A6.2) 

(A6.3) 

where FEX(k, w )  is defined by (A 1.14) with (A 1.15). The dependence on 
frequency o = kx enters FE"(k, w )  only via the function yEx(x + 
iO+ ,  z,, z,), Eq. (A1.15), being a factor of its integrand. Therefore the 
integration over frequencies, Eq. (A6.1), including O(w) from (A6.2), will 
affect only Im yEx: 

loa k dx Im yEx(x + iO+,  z , ,  z2) = - - 4(zl,  z2), 
nk 
2 

(A6.4) 

see Eqs (A7.5)-(A7.7). Therefore 
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240 A. HOLAS AND N. H. MARCH 

We tried to perform integrations in (A6.5), but it happened impossible 
to obtain a result in terms of elementary functions. Therefore we 
proceeed to calculate the contributions to the pair-correlation function, 
according to (1.1), keeping SEx(k) in its integral form 

(A6.6) 3 
[ g ( r )  - l]i& = Im jOm dk exp(ikr)SEx(k)k. 

Here non-analyticity of SEx(k), at k > 0, must be taken into account. 
Using (A6.5), Eq. (A6.6) has been transformed into 

where 

Z(r ,  z,, s,, z,, s,) = Im dk exp(ikr)N(z,, sl, k)N(z2, s t ,  k). (A6.8) s: 1 

Let us investigate the dependence on k of the function N(zi, s i ,  k), 
occurring above. For zi > 0, according to Eq. (A1.17) we find 

2 N ( ~ ~ ,  si, k = 2 4  = e(i - si - ( K  - zi)2) - e(i - si - ( K  + ZJ ) 

= e(i - 1ci - z i l ,  qi + zi) ( ~ 6 . 9 )  

where the “gate” function is introduced 

1 f o r a < x < b  
0 for remaining x. B(x, a, b)  = (A6.10) 

The following identity will be useful 

B(x, a,, h,)B(x ,  a,, b,) 
= [e(x - a,)B(a,, a,, b2)  - e(x - b , ) ~ ( b , ,  a 2 ,  b,)i + [i 21. 

(A6.11) 

Using this, integral (A6.8) is evaluated to be 

1 
r 
- cos(2rb1)B(b,, a,, b2)] + [I a 21) 

- 
a(r ,  z , ,  sl, z,, s,) = - Q(l - sl)e(l - s2){[cos(2ral)~(~,,  a,, b2)  

(A6.12) 
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PAIR FUNCTION OF ELECTRON LIQUID 241 

where 

a(z, s) = IJG - zl; 

b(z, s) = Ji-S + Z; 

a; = a(z;, Si) 

bi = b(zi, 3;) 

(A6.13) 

(A6.14) 

Because of the symmetry of (A6.7), the contribution of the terms from 
the second square brackets in (A6.12) is exactly the same as of those 
from the first square bracket. 

We see that the dependence on r of Eq. (A6.7) with (A6.12) is in the 
form of a prefactor l/r2 and, within the integrand, as factors cos(2ra1) 
and cos(2rb1). So Lighthill's procedure may be applied, if the next 
integration, involving a variable present in a, or b,, is performed. In 
doing this it is sufficient to keep only the leading terms in l /r expansion, 
which simplifies substantially the resulting lengthy expressions. 

It is impossible to give all details here of the calculation of integrals in 
(A6.7), so we will merely record the main steps. The variable s1 is 
replaced by T ,  = (1 - s,)' '~. Note that cos(2ra,) = cos(2r(z1 - zl)) = 
Re exp(i2r(z1 - z,)), and similarly with b,. The nonanalyticity of the 
integrand, as a function of zl, is due to integration limits: B(z,, 0, 1) and 
the factors B(lz, - z, I, a,, b,) or B(z,  + zl, a,, b2). 

The following leading terms are obtained after the integration over z1 
being performed 

9arS 
8nr3 [ g ( r )  - = - ~ Im[exp( - i2r)A FT(2r) + exp(i2r)A2 FT(2r)I 

(A6.15) 

where 

It is easy to evaluate C j ,  Eq. (A6.18), because the only role of Bj  is to 
change the limits of integration, depending on (z,,~,). In different 
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regions of the (z,, z,)-plane, which are separated by straight lines, 
different expression for Cj  are obtained, like a constant, ln(zl + z2) or 

Cj a ln(2zlz, + z1 - z2). (A6.21) 

Then evaluation of A j ,  Eq. (A6.17), with such C j  as in the first two 
examples, is straightforward. The case (A6.21) leads to the following 
integral 

A. HOLAS AND N. H. MARCH 

(A6.22) 

The special function dilog(x) is defined and some of its properties are 
listed in:Appendix 8. 

In the next step analytical properties of Aj ( z , )  are investigated. The 
function A,(zl) exhibits one point of non-analyticity at z1 = 0, where its 
non-analytical part is 

7c2 
CA2(Zl)Ina = O(zl)C(lnlzl 112 - + O(Z, lnlz, 111. (‘46.23) 

The function A,(z,) is non-analytical at the same point 

z2 
6 

CAl(zl)l,, = B(z,)[(lnlz, 1)’ + - - 2 In 2 + O(z, lnlz, I)] (A6.24) 

and also at points z I  = 1 and zl  = 2. As follows from Eq. (2.3) in 
application to (A6.16), non-analyticity at z1 = I would lead to A ,  FT a 
exp(i2r)/r, so, according to (A6.15), to [ g ( r )  - 1IEx a exp(i0)/r4, i.e. 
non-oscillatory character (k = 0), which must be excluded, since the 
expansion (4.1) is valid for k > 0. Close to the point z1 = 2, Al(zl) = 
O((z, - 2)2), so it leads to [ g ( r )  - 11 = O(exp(i4r)/r5), i.e. higher order 
contribution. This contribution probably cancels out with other terms 
O( l p ) ,  discarded during the earlier steps of calculation. 

It should be mentioned that in order to obtain the results (A6.23) and 
(A6.24), the properties of the dilogarithm (A8.3)-(A8.7) must be used. 
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PAIR FUNCTION OF ELECTRON LIQUID 243 

Now we are ready to calculate AjFT(2r), Eq. (A6.16), from Eqs (A6.23) 
and (A6.24), using (A9.9, (A9.7) and (A9.9), and remembering that 
O(x) = [l + sgn(x)]/2. We obtain 

1 n 
AlFT(2r) = -- [y + In 2r] + - 2 In 2 + (y + In 2r)' , (A6.25) 

2r 

71 
A2FT(b) = -~ [y + In 2r] + 2r 

Combining above terms into Eq. (A6.15) we get finally 

(y + In 2r)' - In 2 - 
gars cos(2r) 

[ g ( r )  - I]:& = - ~~ 

8nr4 

(A6.27) 

Here an estimate of the terms, neglected during early stages, is added. 

Appendix 7 Integral of the product of analytical 
functions 

Let us investigate the following integral 

ICF,, F2] = Im J dxF,(x)F,(x) 
n o  

(A7.1) 

involving two analytical functions F,(x) and F,(x) which are given in 
the form of the spectral representations 

(A7.2) 

Let us recall that such representation is possible if (i) the function F j ( z )  
is analytical in the half-plane Im z > 0, and (ii) if for large 1zJ it is of the 
order of l / za ,  tl > 1. Then for real argument x one has 

Fj(x) = FjSR(x + i0'). (A7.3) 

Substituting (A7.3) and (A7.2) into (A7.1) and interchanging the order 
of integrations, we find 
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244 A. HOLAS A N D  N. H. MARCH 

where 

But 

so 

Therefore 

- 2e( - 

and finally 

Note that Z[F, ,  F2] is zero if the parity of Im P ,  is different than that of 
Im F2.  We see from Eq. (A7.8) that for evaluation of the integral (A7.1) 
it is enough, in essence, to know only imaginary part of each of the 
functions involved in the integration. 

Appendix 8 Dilogarithm 

A special function of a real argument, defined as 

dilog(x) = dt (A8.1) 
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PAIR FUNCTION OF ELECTRON LIQUID 245 

and called dilogarithm is very useful for integration over dx of 
expressions like lnla + bxI/(c + ex). The definition (A8.1) is a narrowed 
version of the definition introduced by Lewin4 for Li,(x)-the logarith- 
mic integral of the second order, namely 

dilog(x) = Re Li2(x). (A8.2) 

We recall here from the Lewin’s monograph4 some useful properties of 
the dilogarithm. This function is continuous everywhere and it is 
analytical for all x except x = 1 and x = k co. Here are some particular 
values of it: 

dilog( - 1) = - 7r2/12 

dilog( 1)  = - ?r2/6. 

The following identities are of interest 

(A8.3) 

(A8.4) 

dilog(x) + dilog(1 - x) = dilog(1) - lnlxl In1 1 - X I  (A8.5) 

(A8.6) dilog(x) + dilog(l/x) = 2 dilog(sgn(x)) - i(lnlxl)2 

and the expansion, valid for 1 X I  < 1 : 

x“ 
dilog(x) = C 1. (A8.7) 

From Eq. (A8.5) the expansion around x = 1 may be found or the value 
at x = f and x = 2; from Eq. (A8.6)-behaviour at 1x1 -+ co established. 

n = l  n 

Appendix 9 Fourier transform of powers of the 
I ogar it h m 

We are going to use here the methods developed by Lighthil13 to 
calculate the Fourier transform, Eq. (2. l), of the non-analytical func- 
tions, involving powers of the logarithm. 

Because 

we can obtain the FT of (lnlxl)” from the n-th derivatives over CI of the 
FT of JxI‘, and the FT of sgn(x)(lnlxI)” from the n-th derivative of the 
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246 A. HOLAS AND N. H. MARCH 

FT of sgn(x)lx)", all in the limit a -, 0. We use the following expressions, 
given by Lighthill: 

(A9.2) 

The following results are obtained 

(A9.4) 

(A9.5) 

(A9.6) 

(A9.7) 

(A9.8) 

(A9.10) 

We recall also the useful relation 

(A9.11) 

The Euler constant y 1: 0.5772 and Riemann's function l(3) = 1.2021 
are involved above. 
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